Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
5.
J Diabetes Sci Technol ; 15(5): 1005-1009, 2021 09.
Article in English | MEDLINE | ID: covidwho-1085175

ABSTRACT

The COVID-19 pandemic raised distinct challenges in the field of scarce resource allocation, a long-standing area of inquiry in the field of bioethics. Policymakers and states developed crisis guidelines for ventilator triage that incorporated such factors as immediate prognosis, long-term life expectancy, and current stage of life. Often these depend upon existing risk factors for severe illness, including diabetes. However, these algorithms generally failed to account for the underlying structural biases, including systematic racism and economic disparity, that rendered some patients more vulnerable to these conditions. This paper discusses this unique ethical challenge in resource allocation through the lens of care for patients with severe COVID-19 and diabetes.


Subject(s)
COVID-19/therapy , Diabetes Complications/therapy , Diabetes Mellitus/therapy , Resource Allocation , COVID-19/complications , COVID-19/epidemiology , Diabetes Complications/economics , Diabetes Complications/epidemiology , Diabetes Mellitus/economics , Diabetes Mellitus/epidemiology , Health Services Accessibility/economics , Health Services Accessibility/ethics , Health Services Accessibility/standards , Health Services Accessibility/statistics & numerical data , Health Status Disparities , Healthcare Disparities/economics , Healthcare Disparities/ethics , Healthcare Disparities/organization & administration , Healthcare Disparities/statistics & numerical data , Humans , Pandemics , Racism/ethics , Racism/statistics & numerical data , Resource Allocation/economics , Resource Allocation/ethics , Resource Allocation/organization & administration , Resource Allocation/statistics & numerical data , Triage/economics , Triage/ethics , United States/epidemiology , Ventilators, Mechanical/economics , Ventilators, Mechanical/statistics & numerical data , Ventilators, Mechanical/supply & distribution
8.
Transfusion ; 60(12): 2828-2833, 2020 12.
Article in English | MEDLINE | ID: covidwho-808782

ABSTRACT

BACKGROUND: Arkansas is a rural state of 3 million people. It is ranked fifth for poverty nationally. The first case of coronavirus disease 2019 (COVID-19) in Arkansas occurred on 11 March 2020. Since then, approximately 8% of all Arkansans have tested positive. Given the resource limitations of Arkansas, COVID-19 convalescent plasma (CCP) was explored as a potentially lifesaving, therapeutic option. Therefore, the Arkansas Initiative for Convalescent Plasma was developed to ensure that every Arkansan has access to this therapy. STUDY DESIGN AND METHOD: This brief report describes the statewide collaborative response from hospitals, blood collectors, and the Arkansas Department of Health (ADH) to ensure that CCP was available in a resource-limited state. RESULTS: Early contact tracing by ADH identified individuals who had come into contact with "patient zero" in early March. Within the first week, 32 patients tested positive for COVID-19. The first set of CCP collections occurred on 9 April 2020. Donors had to be triaged carefully in the initial period, as many had recently resolved their symptoms. From our first collections, with appropriate resource and inventory management, we collected sufficient CCP to provide the requested number of units for every patient treated with CCP in Arkansas. CONCLUSIONS: The Arkansas Initiative, a statewide effort to ensure CCP for every patient in a resource-limited state, required careful coordination among key players. Collaboration and resource management was crucial to meet the demand of CCP products and potentially save lives.


Subject(s)
COVID-19/therapy , Health Resources/supply & distribution , Health Services Accessibility/organization & administration , Pandemics , Resource Allocation/organization & administration , SARS-CoV-2/immunology , Antibodies, Viral/blood , Arkansas/epidemiology , Blood Banks/economics , Blood Banks/organization & administration , Blood Donors/supply & distribution , COVID-19/blood , COVID-19/economics , COVID-19/epidemiology , Community Health Planning/economics , Community Health Planning/organization & administration , Contact Tracing , Convalescence , Health Resources/economics , Health Services Accessibility/economics , Humans , Immunization, Passive , Intersectoral Collaboration , Poverty , Resource Allocation/economics , Rural Population , COVID-19 Serotherapy
10.
Clinics (Sao Paulo) ; 75: e2060, 2020.
Article in English | MEDLINE | ID: covidwho-614231

ABSTRACT

New cases of the novel coronavirus disease 2019 (COVID-19), also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continue to rise worldwide following the declaration of a pandemic by the World Health Organization (WHO). The current pandemic has completely altered the workflow of health services worldwide. However, even during this critical period, patients with other diseases, like cancer, need to be properly treated. A few reports have shown that mortality due to SARS-CoV-2 is higher in elderly patients and those with other active comorbidities, including cancer. Patients with lung cancer are at risk of pulmonary complications from COVID-19, and as such, the risk/benefit ratio of local and systemic anticancer treatment has to be considered. For each patient, several factors, including age, comorbidities, and immunosuppression, as well as the number of hospital visits for treatment, can influence this risk. The number of cases is rising exponentially in Brazil, and it is important to consider the local characteristics when approaching the pandemic. In this regard, the Brazilian Thoracic Oncology Group has developed recommendations to guide decisions in lung cancer treatment during the SARS-CoV-2 pandemic. Due to the scarcity of relevant data, discussions based on disease stage, evaluation of surgical treatment, radiotherapy techniques, systemic therapy, follow-up, and supportive care were carried out, and specific suggestions issued. All recommendations seek to reduce contagion risk by decreasing the number of medical visits and hospitalization, and in the case of immunosuppression, by adapting treatment schemes when possible. This statement should be adjusted according to the reality of each service, and can be revised as new data become available.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus , Lung Neoplasms/therapy , Pandemics/prevention & control , Patient Care/standards , Pneumonia, Viral/prevention & control , Practice Guidelines as Topic , Aged , Betacoronavirus , Brazil , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Lung Neoplasms/complications , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Resource Allocation/economics , Resource Allocation/organization & administration , SARS-CoV-2 , Societies, Medical
12.
Oncologist ; 25(6): e936-e945, 2020 06.
Article in English | MEDLINE | ID: covidwho-31492

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has rapidly spread globally since being identified as a public health emergency of major international concern and has now been declared a pandemic by the World Health Organization (WHO). In December 2019, an outbreak of atypical pneumonia, known as COVID-19, was identified in Wuhan, China. The newly identified zoonotic coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is characterized by rapid human-to-human transmission. Many cancer patients frequently visit the hospital for treatment and disease surveillance. They may be immunocompromised due to the underlying malignancy or anticancer therapy and are at higher risk of developing infections. Several factors increase the risk of infection, and cancer patients commonly have multiple risk factors. Cancer patients appear to have an estimated twofold increased risk of contracting SARS-CoV-2 than the general population. With the WHO declaring the novel coronavirus outbreak a pandemic, there is an urgent need to address the impact of such a pandemic on cancer patients. This include changes to resource allocation, clinical care, and the consent process during a pandemic. Currently and due to limited data, there are no international guidelines to address the management of cancer patients in any infectious pandemic. In this review, the potential challenges associated with managing cancer patients during the COVID-19 infection pandemic will be addressed, with suggestions of some practical approaches. IMPLICATIONS FOR PRACTICE: The main management strategies for treating cancer patients during the COVID-19 epidemic include clear communication and education about hand hygiene, infection control measures, high-risk exposure, and the signs and symptoms of COVID-19. Consideration of risk and benefit for active intervention in the cancer population must be individualized. Postponing elective surgery or adjuvant chemotherapy for cancer patients with low risk of progression should be considered on a case-by-case basis. Minimizing outpatient visits can help to mitigate exposure and possible further transmission. Telemedicine may be used to support patients to minimize number of visits and risk of exposure. More research is needed to better understand SARS-CoV-2 virology and epidemiology.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/prevention & control , Medical Oncology/organization & administration , Neoplasms/therapy , Pandemics/prevention & control , Patient Care/standards , Pneumonia, Viral/prevention & control , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Hand Hygiene/organization & administration , Hand Hygiene/trends , Humans , Infection Control/organization & administration , Infection Control/trends , International Cooperation , Intersectoral Collaboration , Medical Oncology/economics , Medical Oncology/standards , Medical Oncology/trends , Patient Care/economics , Patient Care/trends , Patient Education as Topic , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Resource Allocation/economics , Resource Allocation/organization & administration , Resource Allocation/standards , Resource Allocation/trends , SARS-CoV-2 , Telemedicine/economics , Telemedicine/organization & administration , Telemedicine/standards , Telemedicine/trends , World Health Organization
13.
J Korean Med Sci ; 35(13): e140, 2020 Apr 06.
Article in English | MEDLINE | ID: covidwho-31392

ABSTRACT

The outbreak of Coronavirus Disease 2019 (COVID-19) caused a worldwide pandemic. Less than 6 weeks after the first confirmed cases in Korea, the patient number exceeded 5,000, which overcrowded limited hospital resources and forced confirmed patients to stay at home. To allocate medical resources efficiently, Korea implemented a novel institution for the purpose of treating patients with cohort isolation out of hospital, namely the Community Treatment Center (CTC). Herein, we report results of the initial management of patients at one of the largest CTC in Korea. A total of 309 patients were admitted to our CTC. During the first two weeks, 7 patients were transferred to the hospital because of symptom aggravation and 107 patients were discharged without any complication. Although it is a novel concept and may have some limitations, CTC may be a very cost-effective and resource-saving strategy in managing massive cases of COVID-19 or other emerging infectious diseases.


Subject(s)
Ambulatory Care Facilities , Betacoronavirus , Coronavirus Infections , Hospitalization , Pandemics , Patient Isolation , Pneumonia, Viral , Resource Allocation , COVID-19 , Cohort Studies , Coronavirus Infections/economics , Coronavirus Infections/therapy , Cost Savings , Disease Outbreaks , Humans , Pandemics/economics , Patient Transfer , Pneumonia, Viral/economics , Pneumonia, Viral/therapy , Republic of Korea/epidemiology , Resource Allocation/economics , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL